INSCREVA-SE
...
Início
Agosto de 2023
Horário

Terças e quintas-feiras, das 19h às 22h30

Arquitetura de Soluções para Inteligência Artificial e Dados

Todos os setores econômicos mundiais já perceberam que todo tipo de decisão que não seja tomada orientada a dados (Data-driven decision making) incorpora um risco alto de erro, o que não é mais uma opção devido à alta competitividade do mercado. Os dados de uma empresa é, atualmente, o asset mais valioso que ela possui. Evidentemente, esse valor está associado ao conhecimento escondido nos dados, conseguir lapidar e transformá-los em conhecimento, tornou-se uma habilidade fundamental para as empresas. Esta especialização possui o objetivo de formar profissionais capazes de explorar, analisar e extrair insights a partir de dados, dando apoio a tomada de decisão de empresas de áreas operacionais e gerenciais. Um arquiteto de solução em IA e Dados é capaz de projetar, definir e implementar soluções computacionais complexas para sistemas de Inteligência Artificial e Ciência de Dados, realizando deploy completo de projetos complexos. Neste curso será abordado técnicas avançadas de Inteligencia Artificial e de análise de dados, fornecendo uma formação completa nessas áreas.

O curso de Especialização em Arquitetura de Soluções em Inteligência Artificial e Dados é composto por três módulos de 120 horas cada: Ciência de Dados, Técnicas e Aplicações (120 h),  Inteligência Artificial com Deep-Learning (120 h) e Técnicas Avançadas de IA e Computação (120h).

Objetivo
Explorar aspectos técnicos relevantes no dia a dia de um profissional da área de Dados (IA e Ciência de Dados), o curso pretende apresentar problemas reais aos alunos, ensinando seus tópicos enquanto trabalho no problema (PBL). Ao se formar o aluno será capaz de trabalhar em projetos de Inteligência Artificial nas áreas de aprendizado supervisionado, não supervisionado e aprendizado por reforço, aplicados em problemas de classificação, series temporais, processamento de imagem, processamento de linguagem natural, regressão e segmentação. O aluno também será capaz de realizar análises descritivas, diagnosticas, preditivas e prescritivas com base em dados, e projetar a arquitetura de soluções computacionais com o intuito de viabilizar o projeto de IA e de Dados como produto.

Público-Alvo
Profissionais de áreas técnicas ou gerenciais que já possuem conhecimento básico em Aprendizado de Máquina e Python, que desejam entender como extrair informações e conhecimento a partir de dados utilizando IA, além de ser capaz de definir, projetar e implementar soluções computacionais capazes de servir ou gerenciar sistemas de Inteligência Artificial e Ciência de Dados, além de melhorar o processo de decisão em suas empresas ou instituições. É ideal para o profissional criativo e prático que busca obter vantagem dos atuais e futuros avanços em Ciência de Dados e Inteligência Artificial.

Diferencial
O curso consiste de uma oportunidade de especialização oferecida de forma dosada e gradativa, com muitas atividades práticas e com problemas de mercado. Permitindo ao participante aprender com detalhes novas tecnologias que estão revolucionando a forma como a informação e os computadores são utilizados. O curso é organizado de forma a não apenas informar os participantes, mas realmente instrumentalizá-los para aplicarem na prática seus conhecimentos no dia a dia de seu trabalho, utilizando as ferramentas mais utilizadas do mercado e com prática em problemas reais.

Carga Horária

368

Matrícula com 50% de desconto até 16/12/2024: R$ 890,00

Investimento

Matrícula + 35 parcelas fixas de R$ 890,00 *
* Curso de Especialização completo - 360 horas. Clique aqui para outras opções de pagamento

Descontos

Ex-aluno graduado na Mauá: 10%
Grupos (2 ou mais alunos): 10%
Associados da AEXAM (ex-alunos): 15%
Ex-aluno graduado na Mauá em 2022: 30%
Empresas conveniadas (a consultar)

Taxa de Reserva: R$ 300,00

O pagamento poderá ser efetuado por meio de boleto, cartão de débito ou crédito. Na efetivação da matrícula essa Taxa de Reserva será deduzida do valor da matricula. Em caso de desistência da matrícula o valor da taxa de reserva não será devolvido e a retenção se faz necessária para pagamento das despesas administrativas relativas ao processo seletivo, conforme preconizado no Código de Defesa do Consumidor. Caso não haja número de alunos interessados para formação de turma, o valor correspondente à Taxa de Reserva será devolvido integralmente.

São Caetano do Sul

Curso In Company Mais Informações

Coordenadores

Abrir informações do corpo docente
Eduardo Lobo Lustosa Cabral
Doutor em Dinâmica dos Sistemas e Controle pelo Massachusetts Institute of Technology. Mestre em Tecnologia de Reatores Nucleares pelo Instituto de Pesquisas Energéticas e Nucleares. Graduado em Engenharia Mecânica pela USP. Professor da Escola Politécnica da USP e do Instituto Mauá de Tecnologia. Atua nas áreas de inteligência artificial, redes neurais e dinâmica e controle de sistemas.
Abrir informações do corpo docente
Jones Eduardo Egydio
Doutorando em Engenharia de Sistemas pela Escola Politécnica da USP. Mestre em Engenharia Elétrica pela Universidade Federal do ABC (UFABC). Graduado em Engenharia Eletrônica pelo Instituto Mauá de Tecnologia. Graduado em Matemática pelo Centro Universitário Fundação Santo André. Membro do Comitê de Educação da SAE Brasil. Atua nas áreas de matemática, estatística e ciência de dados.

Módulos de cursos



Análise Estatística de Dados
28h
Abrir mais informações da disciplina

Esta disciplina fornecerá a capacidade técnica e analítica ao aluno para a exploração de dados utilizando técnicas estatísticas e ferramentas de visualização de dados. Ademais, com o objetivo de auxiliar a fundamentação na tomada de decisão de forma assertiva ao negócio, essa disciplina fornecerá uma base de matemática, probabilidade e estatística direcionada à análise de dados, permitindo a realização de análise descritiva e diagnóstica. Os três pontos principais dessa disciplina são: (1) utilização de ferramentas para visualização de dados nas bibliotecas da linguagem Python; (2) obtenção, limpeza e tratamento de dados de diferentes fontes, tais como, base de dados e arquivos como CSVs entre outros; (3) análise estatística de dados, visando a modelagem e desenvolvimento do pensamento crítico do aluno para que seja capaz de extrair insights que auxiliem gestores e executivos em suas decisões.

Aprendizado de máquina
32h
Abrir mais informações da disciplina

Esta disciplina apresenta os conceitos fundamentais de aprendizado de máquina (Machine Learning) no contexto da Inteligência Artificial. O objetivo principal da disciplina é fornecer ao aluno uma visão geral da área de aprendizado de máquina, destacando aspectos históricos, abordagens clássicas e modernas, campos de aplicação, assim como tendências e perspectivas futuras. Os métodos estudados consistem em: regressão e classificação; agrupamento e similaridade; análise de componentes principais (PCA); regressão linear Bayesiana e classificadores de Bayes; classificadores tipo árvore e árvores de decisão. O aluno será capaz de entender os diversos métodos de aprendizado de máquina para que seja capaz de escolher a melhor solução para um determinado cenário/problema, simulado ou real, bem como conseguir implementar a solução com ferramentas de mercado, como a biblioteca Scikit-Learn.

Inteligência em Negócios
20h
Abrir mais informações da disciplina

Esta disciplina consiste em conectar dados e decisões de negócios. O principal objetivo é elucidar aos alunos porque certas decisões precisam ser baseadas em dados. Nesta disciplina o aluno será desafiado a observar a relação dos dados em outras dimensões da sociedade, sendo abordados conceitos como privacidade de dados, impacto nas decisões e empregabilidade nas empresas e cultura digital. O aluno será capaz de alinhar os conceitos técnicos aprendidos com os objetivos de criação de valor por meio de dados, além de desenvolver habilidades para comunicação de resultados analíticos. Além disso, é objetivo dessa disciplina apresentar ferramentas com plataformas reconhecidas do mercado para a área de BI.

Mineração de dados
20h
Abrir mais informações da disciplina

Esta disciplina consiste em desenvolver a capacidade técnica e analítica do aluno para a exploração de dados e geração de valor utilizando técnicas como KDD (knowledge-discovery in databases) e ferramentas de obtenção, exploração, análise e visualização de dados para modelar e entender problemas reais de empresas, com o intuito de extrair informações relevantes e conhecimentos dos dados e auxiliar a tomada de decisão baseado na análise do passado. Nessa disciplina o aluno aprende a coletar dados, realizar limpeza e processamento de dados para que possam ser usados para desenvolvimento de modelos e tomadas de decisão.

Projetos em Ciência de Dados
32h
Abrir mais informações da disciplina

Esta disciplina apresenta a interseção entre a Análise Estatística de Dados, Mineração de Dados, Aprendizado de Máquina e Inteligência de Negócios. Esses conhecimentos serão utilizados para o entendimento do problema e levantamento de requisitos de análise de dados. Adicionalmente, serão aprendidos os principais algoritmos de Aprendizado de Máquina como XGBoost, Decision Tree e Randon Forest. Desta forma, os alunos estarão aptos a realizar uma análise descritiva e diagnóstica utilizando as ferramentas de análise estatística e aplicar modelos de predição utilizando dados. O aluno deverá ser capaz de apresentar suas descobertas e insights de maneira convincente e visual, tendo em vista as características do negócio em estudo.

Fundamentos de inteligência artificial
36h
Abrir mais informações da disciplina

Essa disciplina apresenta os fundamentos de "deep-learning" e o uso das bibliotecas Keras e TensorFlow, que são específicas para o desenvolvimento de redes neurais artificiais. Nessa disciplina os alunos aprendem como criar, treinar e utilizar uma rede neural "deep-learning". A disciplina se baseia em vários estudos de casos para que os alunos aprendam como aplicar na prática redes "deep-learning" em várias áreas do conhecimento. O objetivo principal dessa disciplina é mostrar aos alunos como redes neurais tipo "deep-learning" realmente funcionam e capacitar os alunos a aplicar essas redes em suas próprias aplicações. A utilização do Keras e TensorFlow permite que os alunos aprendam facilmente como formular, criar e implementar problemas de aprendizado de máquina usando redes "deep-learning".

Inteligência artificial aplicada à séries temporais
32h
Abrir mais informações da disciplina

Essa disciplina apresenta como construir redes neurais recorrentes para processamento de sequências temporais. O objetivo dessa disciplina é ensinar os alunos como funcionam as redes neurais recorrentes e suas variantes. A disciplina se baseia em estudos de casos para que os alunos aprendam como aplicar na prática redes neurais recorrentes "deep-learning" para problemas de análise de séries temporais usando as plataformas de desenvolvimento Keras e TensorFlow.

Inteligência artificial aplicada à visão computacional
32h
Abrir mais informações da disciplina

Essa disciplina apresenta as redes neurais convolucionais e suas aplicações a imagens e vídeos. O objetivo dessa disciplina é ensinar os alunos como construir redes neurais convolucionais, suas principais variações e como aplicar esse tipo de rede em tarefas de processamento de imagens e vídeos. A disciplina se baseia em estudos de casos para que os alunos aprendam como aplicar na prática redes neurais convolucionais "deep-learning" para detecção e reconhecimento visual.

Processamento Natural de Linguagem (PLN)
32h
Abrir mais informações da disciplina

O processamento de linguagem natural (PLN) é a subárea da inteligência artificial que estuda a capacidade e as limitações de uma máquina em entender a linguagem dos seres humanos. Esta disciplina aborda normalização de texto, correção ortográfica, “stemização” e “lematização”, idf-tf, extração de contexto, sumarização, “word embedding”, tais como, Word2Vec, FastText, representação de frases com BoW, análise de sentimentos, “chat bots” e utilização de redes neurais para modelagem de linguagem natural, e realizar operações de tradução e sugestão de palavras em contexto, entre outras.

Aprendizado por reforço
32h
Abrir mais informações da disciplina

O Aprendizagem por Reforço é o treinamento de modelos de inteligência artificial onde um agente interage com o ambiente coletando dados e tomando decisões. O agente aprende a atingir uma meta em um ambiente incerto e potencialmente complexo, essa técnica é extremamente poderosa uma vez que não necessita de um conjunto de dados desenvolvido especificamente para o seu treinamento. São apresentados conceitos como agentes, ambiente, estado, política de ações, recompensas e algoritmos, tais como, “Markov Decision Process” (MDP), “Q-Learning” e métodos “Value-Based”, “Policy-Based” e “Model-Based”.

Desenvolvimento de sistemas de IA/CD (Web Services, Web App e Mobile)
32h
Abrir mais informações da disciplina

Desenvolvimento e “deploy” de sistemas com IA e CD. Uma das formas mais utilizadas para “deploy” é via “web services” REST. Essa disciplina apresenta todos os conceitos de desenvolvimento “back-end” e da arquitetura REST. Outro ponto importante é o desenvolvimento de aplicações mobile com IA incorporado em Javascript e também aplicações web que consomem serviços.

Engenharia de Dados
28h
Abrir mais informações da disciplina

Esta disciplina tem foco no profissional que gerencia sistemas voltados a dados, com o objetivo de deixá-los acessíveis para as mais diversas áreas que dependem de dados como principal fonte de trabalho. O aluno aprenderá sobre governança de dados, modelagem de dados para “data warehouse”, gerenciamento de dados relacionais e não relacionais, “data lakes”, criação de “data marts” e plataformas escaláveis para dados.

Modelos gerativos com Deep learning
16h
Abrir mais informações da disciplina

Modelos gerativos consistem em métodos da inteligência artificial capazes de criar novas imagens, vídeos, textos e músicas. O processo de geração de novos dados é uma tarefa de aprendizado não supervisionado que envolve descobrir e aprender automaticamente padrões nos dados de entrada de forma que o modelo possa ser usado para gerar ou produzir novos exemplos similares aos dados originais. Três métodos baseados em redes neurais deep learning são apresentados nessa disciplina: autoencoders (AE), autoencoders variacionais (AEV) e redes neurais adversárias generativas (GANs). 

Processamento Natural de Linguagem (PLN)
32h
Abrir mais informações da disciplina

O processamento de linguagem natural (PLN) é a subárea da inteligência artificial que estuda a capacidade e as limitações de uma máquina em entender a linguagem dos seres humanos. Esta disciplina aborda normalização de texto, correção ortográfica, “stemização” e “lematização”, idf-tf, extração de contexto, sumarização, “word embedding”, tais como, Word2Vec, FastText, representação de frases com BoW, análise de sentimentos, “chat bots” e utilização de redes neurais para modelagem de linguagem natural, e realizar operações de tradução e sugestão de palavras em contexto, entre outras.

Abrir informações do corpo docente
Alcides Carlos de Araújo

Doutor na área de métodos quantitativos e informática pela FEA/USP. Possui mais de 10 anos de experiência na área de análise de dados. Atua há mais de 3 anos como cientista de dados líder na Datakron, participando de entregas de projetos de alta escala de dados nos segmentos como Telecom, energia e marketing digital.

Abrir informações do corpo docente
Eduardo Lobo Lustosa Cabral

Doutor em Dinâmica dos Sistemas e Controle pelo Massachusetts Institute of Technology. Mestre em Tecnologia de Reatores Nucleares pelo Instituto de Pesquisas Energéticas e Nucleares. Graduado em Engenharia Mecânica pela USP. Professor da Escola Politécnica da USP e do Instituto Mauá de Tecnologia. Atua nas áreas de inteligência artificial, redes neurais e dinâmica e controle de sistemas.

Abrir informações do corpo docente
Leo Rodrigues Biscassi

Possui Mestrado em Modelagem Computacional em Ciência e Tecnologia pela Universidade Estadual de Santa Cruz (2017); Graduação em Sistemas de Informação pela Faculdade Barretos (2014). Nos últimos anos têm trabalhado com sistemas data-intensive, seja estruturando ambientes de dados, desenvolvendo ou integrando-os. Tem interesse em temas relacionados a big data, computação distribuída, computação paralela, arquitetura e engenharia de software.

Abrir informações do corpo docente
Lucas Pereira Cotrim

Graduado em Engenharia Mecatrônica pela Escola Politécnica da Universidade de São Paulo (2019), realizou intercâmbio como bolsista através do programa de Parcerias Estratégicas da USP na Technische Universität München (2017-2018) com foco em Inteligência Artificial e Aprendizado de Máquina. Atualmente cursa Mestrado em Engenharia de Controle e Automação Mecânica no Tanque de Provas Numérico da USP (TPN-USP) em projeto da Petrobrás com foco na aplicação de técnicas de Inteligência Artificial para previsão da dinâmica de UEPs.

Abrir informações do corpo docente
Marcos Menon José

Graduado em Engenharia Mecatrônica pela Escola Politécnica da Universidade de São Paulo (2019) e intercâmbio pelo programa de Aproveitamento de Estudos focado de inteligência artificial e sistemas robóticos na Universitat Politècnica de Catalunya (2017-2018). Atualmente, cursa mestrado em Engenharia da Computação na USP como bolsista pelo Centro de Ciências de Dados C2D, com pesquisa em técnicas de Aprendizado por Reforço e suas aplicações.