PRODUÇÃO DE CONCRETO DE FLUIDEZ CONTROLADA (CFC) COM SUBSTITUIÇÃO PARCIAL DE AGREGADOS NATURAIS POR RESÍDUOS DE CONSTRUÇÃO E DEMOLIÇÃO (RCD)

Pedro Martins Ferreira Sampaio¹; Heloísa Cristina Fernandes Cordon²

¹Aluno de Iniciação Científica da Escola de Engenharia Mauá (EEM/CEUN-IMT); ² Professora da Escola de Engenharia Mauá (EEM/CEUN-IMT).

Resumo.

Uma nova categoria de concreto chamada de "Control Flow Concrete" ou Concreto de Fluidez Controlada (CFC) surgiu recentemente para preencher a lacuna entre o concreto convencional e o concreto autoadensável, mesclando características importantes de cada tipo de concreto. A resistência do CFC pode ser equivalente à do concreto convencional, no entanto o CFC oferece maior fluidez e resistência à segregação a um custo menor do que o concreto autoadensável, sendo utilizados os mesmos materiais para sua produção, porém com uso de aditivos inovadores que possuem policarboxilatos e melhoradores reológicos como base química principal. Resíduos originários da própria indústria da construção civil, como os resíduos de construção e demolição (RCD), atraem negativamente a atenção da sociedade devido ao seu dificil descarte e seu crescente volume acumulado. Sob esta ótica e abrangendo o método de empacotamento de partículas, que se utiliza das características físicas dos materiais empregados na mistura para a produção de um concreto de melhor desempenho, analisou-se a produção de um CFC referência classe C25 utilizando agregados naturais, comparando as propriedades mecânicas e reológicas com um CFC substituindo 10% e 20% em massa do agregado graúdo natural por RCD, com um consumo de cimento fixado em 340 kg.m⁻³. O desempenho do traço foi analisado por meio de ensaios em seu estado fresco, onde todos os traços apresentaram classe de espalhamento SF1 (entre 550 e 650 mm) e estado endurecido, em que os resultados de resistência à compressão apresentaram um decréscimo de 11% no concreto com maior teor de substituição (20% de RCD) com relação ao traço de referência aos 28 dias, indicando que é possível produzir um CFC com RCD e que a redução no desempenho mecânico se torna um desafio superável mediante à possibilidade de redução do impacto ambiental causado pelo RCD, uma vez que é possível reutilizar o resíduo, minimizando, assim a exploração de jazidas naturais.

1. Introdução

Apesar do concreto convencional, produzido através da mistura de cimento Portland, com areia, brita e água, ser material de construção mais utilizado no mundo, atualmente não se pode mais considerar apenas o estudo sobre ele. O concreto de fluidez controlada (Control Flow Concrete – CFC) é uma nova categoria de concreto altamente fluido, que proporciona um comportamento reológico distinto do convencional, e até mesmo do concreto autoadensável.

O CFC é possível de ser formulado devido ao uso dos aditivos de policarboxilatos modificadores de viscosidade, utilizando-se misturas do concreto convencional, com menor teor de pó do que os concretos autoadensáveis. Oferece vantagem na diminuição da demanda de mão de obra e tempo para colocação de concreto, sem risco de segregação e tem benefícios ambientais em comparação ao concreto autoadensável.

Uma vez que os recursos naturais estão cada vez mais escassos, é necessária a preservação do meio ambiente e, para o setor da construção civil, uma maneira de reduzir o impacto ambiental é formulando concretos que sejam mais ecológicos, pois a indústria cimenteira é uma das indústrias com maior porcentagem de emissões de CO₂ no planeta já que ele é um dos recursos mais utilizados no mundo (MEHTA, P. K.; MONTEIRO, 2008).

ÂNGULO ET AL (2002) ressaltam que, no Brasil, é necessário desenvolver outros mercados para garantir a reciclagem em grande escala dos resíduos da construção civil (RCC), também denominados de Resíduos de Construção e Demolição (RCD), pois no atual estágio de conhecimento, a utilização de agregados reciclados de RCC como base de pavimentação é a

única alternativa tecnologicamente consolidada.

Neste projeto, com a utilização do método de empacotamento de partículas, que possibilita calcular as proporções necessárias de materiais para a produção do concreto, visando minimizar os espaços vazios entre as partículas, buscou-se alcançar o concreto de fluidez controlada, onde o agregado graúdo natural foi substituído de 10 a 20% em massa, por agregado reciclado de RCD, mantendo as características mecânicas.

2. Objetivo

Estudar o impacto da substituição parcial de agregados naturais por resíduos de construção e demolição (RCD) nas propriedades de estado fresco e estado endurecido de concretos de fluidez controlada.

3. Material e Métodos

3.1. Caracterização dos Materiais

Os materiais utilizados no estudo foram cimento Portland CPV-ARI, areia rosa (AR), areia de brita (AB), brita zero natural (B0), resíduos de construção e demolição (RCD) e o aditivo Concera SA8212 redutor de água e modificador de reologia de alto desempenho a base de policarboxilato, utilizado na produção de concretos com alta fluidez. O RCD foi obtido a partir resíduos fornecidos pela Urbem e tiveram sua granulometria ajustada, entre as peneiras com malhas de 12,5mm e 1,18mm de modo a coincidir com a Brita 0.

A Figura 1 apresenta a distribuição granulométrica do cimento (a) e dos materiais inertes (b). Para os materiais inertes aplicou-se o peneiramento conforme a norma ABNT NBR 248 (ABNT — Associação Brasileira de Normas Técnicas, 2003). Para o cimento, a granulometria foi obtida por difração a laser. As massas específicas de cada componente sólido, determinadas por picnometria a gás, estão apresentadas na Tabela 1.

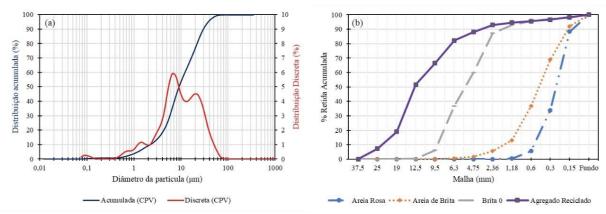


Figura 1- Distribuição granulométrica dos agregados

Tabela 1 - Massa Específica dos Materiais.

Material	CPV	Areia Rosa	Areia de Brita	Brita 0	Brita RCD
Massa Específica (g/cm³)	3,021	2,659	2,656	2,601	2,569

3.2Empacotamento de Partículas

Empacotamento de partículas consiste na seleção adequada da proporção e tamanho dos materiais particulados, de forma que os vazios maiores sejam preenchidos por partículas menores, cujos vazios serão novamente preenchidos com partículas ainda menores e assim sucessivamente (CASTRO; PANDOLFELLI, 2009).

Alguns modelos de empacotamento têm sido propostos como ferramentas teóricas para calcular a densidade de empacotamento das partículas e, assim, otimizar misturas granulares de

concreto. Os estudos teóricos e experimentais resultaram em duas abordagens básicas: uma abordagem discreta proposta por Furnas (Equação 1), que considera as partículas de maneira individual, e a abordagem contínua, modelo de Andreasen (Equação 2), que considera as partículas como distribuições contínuas.

$$CPFT(\%) = 100 \left(\frac{D^{log.r} - D_s^{log.r}}{D_L^{log.r} - D_s^{log.r}} \right)$$
 Equação 1

$$CPFT(\%) = 100 \left(\frac{D}{D_L}\right)^q$$
 Equação 2

CPFT é a porcetagem volumétrica de partículas, D_L é o diâmetro da maior partícula, DS é o diâmetro da menor partícula, r é a razão entre o volume de partícula entre duas malhas de peneiras consecutivas e o q é o módulo ou coeficiente de distribuição.

No entanto Dinger e Funk desenvolveram um novo modelo que provou ser similar aos modelos citados. Este novo modelo conhecido como modelo de Alfred (Equação 3). (PILEGGI; RODRIGUES, 1996). que é um aperfeiçoamento dos dois modelos anteriores. O modelo de Alfred introduz o conceito do tamanho mínimo de partícula (D_S) na equação de Andreasen.

$$CPFT(\%) = 100 \left(\frac{D^q - D_S^q}{D_L^q - D_S^q} \right)$$
 Equação 3

Uma série de estudos foram conduzidos com o modelo de Alfred, especialmente em cêramica, e verificou-se que o fator de distribuição que traz a maior densidade de empacotamento e menor porosidade, exigindo, portanto, o mínimo de água e demanda de cimento Portland é de 0,37. Fatores de distribuição mais baixos foram sugeridos para misturas de alta fluidez. Pesquisas avançadas demostraram que o fator q na equação de Alfred pode variar de 0,21 a 0,37, com fatores próximos a 0,21, para misturas altamente fluidas (T. DE GRAZIA et al., 2019).

3.3 Determinação do Traço do Concreto

Escolheu-se formular um concreto de fluidez controlada (CFC) sem a incorporação de resíduos chamado referência, sendo depois, determinados mais dois traços substituindo 10% e 20% do agregado graúdo natural (Brita 0) por resíduos de construção e demolição (RCD) na mesma faixa granulométrica.

Para a determinação do Traço Referência, adotou-se o fator de distribuição q=0,21 e adicionou-se os valores obtidos dos ensaios de granulometria e de massa específica dos sólidos ao software EMMA (Elkem Materials Mixture Analyser) para atingir o melhor empacotamento entre os materiais

O software EMMA apresenta duas curvas, a curva rosa representa a curva do modelo adotado, sendo composta pelos seguintes dados: as massas específicas (Tabela 1), distribuição granulométrica (Figura 1), o valor do coeficiente de distribuição q e o modelo de dosagem utilizado, neste caso modelo de Alfred. Assim o software calcula o modelo teórico em forma de gráfico, chegando ao empacotamento ideal das partículas. O restante das curvas representa o empacotamento gerado a partir de proporções das quantidades dos materiais inseridos no software, a fim de se aproximar ao máximo do empacotamento ideal (curva rosa).

A Figura 2 apresenta os gráficos gerados pelo EMMA e os traços dos CFCs com consumo total de ligantes fixados em torno de 340 kg/m³, sendo o Traço Referência (TR) com 0% de substituição de brita 0 por agregado reciclado, Traço T10 com 10% de substituição e o Traço T20 com 20% de substituição. O teor de argamassa foi fixando em 60% e o aditivo em 0,6%. As curvas de cada traço coincidiram, como mostrado a seguir.

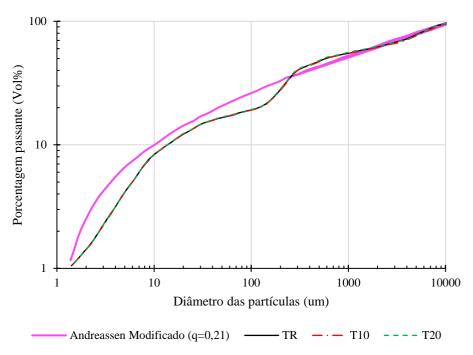


Figura 2 - Empacotamento das partículas através do software EMMA.

Tabela 2 – Formulações de concreto utilizadas.

-	Tabela 2 – Formulações de concreto utilizadas.						
Materiais	TR (kg/m ³)	T10 (kg/m ³)	$T20 (kg/m^3)$				
Cimento CPV	340,39	337,38	333,88				
Areia Rosa	440,23	436,35	431,81				
Areia de Brita	474,27	470,09	465,20				
Brita 0	0,00	745,96	656,18				
Agregado Reciclado	219,55	82,88	164,04				
Água	219,55	226,05	233,71				
Aditivo	2,04	2,02	2,0				

3.4 Produção do Concreto de Fluidez Controlada

Foram produzidos ao todo 45 corpos de prova, sendo eles para ensaios de compressão, absorção e variação dimensional. Para realizar os ensaios dos traços T10 e T20, o agregado reciclado ficou submerso em água durante um período de 24 horas antes do ensaio. Foi utilizada uma betoneira, onde a ordem de mistura consiste nos seguintes passos:

- i. Umidificar a betoneira e adicionar todo o agregado graúdo + 1/3 da água por 1 minuto;
- ii. Adicionar toda a areia de brita e misturar por mais 1 minuto;
- iii. Adicionar a areia rosa e o cimento + 2/3 da água e misturar por mais 1 minuto;
- iv. Adicionar todo o aditivo e misturar por mais 6 minutos.

4. CFC no Estado Fresco

4.1 Determinação do Espalhamento – Slump Flow Test

Foi realizado o ensaio de Método do cone de Abrams (Slump Flow Test) que tem como abjetivo analisar o espalhamento do concreto no estado fresco, executado conforme ("ABNT NBR15823-2 (ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2017).pdf", [s.d.])

Figura 3 - Slump Flow Test

4.2 Determinação da Massa Unitária

Os ensaios de Determinação de Massa Unitária foram realizados de acordo com a norma ("ABNT NBR 16972 (ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2021).pdf", [s.d.])

Figura 4 - Ensaio de massa unitária

5. CFC no Estado Endurecido

5.1Ensaio de Absorção por Capilaridade

O ensaio de Determinação da Absorção de água por Capilaridade foi realizado de acordo com a norma("ABNT NBR 9779 (ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2013).pdf", [s.d.]), para tanto, foram moldados 3 corpos de prova para cada traço, determinando a massa saturada dos corpos de prova com 3h, 6h, 24h, 48h e 72h, contadas a partir da colocação destes em contato com a água.

Figura 5 - Ensaio de Absorção por Capilaridade

5.2Ensaio de Resistência à Compressão

Os ensaios de Resistência à Compressão foram realizados de acordo com a norma ABNT NBR 5739 (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2018), para tanto, foram moldados 3 corpos de prova cilíndricos de dimensões 10 cm x 20 cm para cada traço, verificando a resistência à compressão desses corpos de prova para 3, 7, 28 e 56 dias.

Figura 6 - Ensaio de Resistência à Compressão

6. CFC no Estado Endurecido

6.1 Propriedades no Estado Fresco

Os ensaios de Slump flow e de massa unitária, foram realizados para cada traço da pesquisa, onde os resultados encontram-se na Tabela 3.

Tabela 3 - Propriedades no estado fresco dos concretos

	Traço referência	Traço T10	Traço T20
Espalhamento (mm)	620	540	560
Massa Unitária Concreto (kg/dm³)	2,329	2,186	2,260

Para o Slump flow, o objetivo era de alcançar a faixa de espalhamento SF 1 (550 a 650 mm), que é recomendada para estruturas não armadas ou com baixa taxa de armadura e embutidos conforme a norma ABNT NBR15823-2 (ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2017) observar que com a substituição do agregado natural pelo agregado reciclado, o espalhamento ficou menor, ou seja, o CFC ficou menos coeso, comportamento também observado no trabalho de (BARBOZA; ALMEIDA FILHO, 2018)

O ensaio de massa unitária mostrou que o traço referência apresentou um maior valor quando comparado aos traços T10 e T20, ou seja, os traços com a substituição do agregado natural apresentam um volume de vazios maior do que o traço referência. Contudo, mesmo com o traço T20 tendo uma substituição maior de agregados naturais, a sua massa unitária foi maior quando comparada ao traço T10, sendo isso possível, devido à grande heterogeneidade que os resíduos de construção de demolição (RCD) apresentam.

6.2 Propriedades no Estado Endurecido

Os resultados do ensaio de resistência à compressão (Figura 7) mostram que para todos os traços a resistência aumentou em função do tempo e que o traço referência apresenta maior resistência quando comparado com os concretos com substituição de 10 e 20% do agregado natural por agregado reciclado. A substituição de brita 0 por agregado reciclado tem o maior impacto sobre esta propriedade nos primeiros 7 dias, com uma redução de 20% e 13% para os traços T10 e T20 em comparação ao traço referência. Com 28 dias, a diferença entre as resistências diminui, apresentando uma redução de 17% para o traço T10 e 11% para o traço T20.

É importante observar que o traço T20 nos 7 primeiros dias apresentou 9% a mais na resistência à compressão quando comparado ao traço T10, mesmo com um menor consumo de cimento e com maior quantidade em massa do agregado reciclado. Este fato pode ter ocorrido, como dito anteriormente, devido a heterogeneidade do RCD e, o traço T20 pode ter apresentado um empacotamento melhor se comparado ao traço T10.

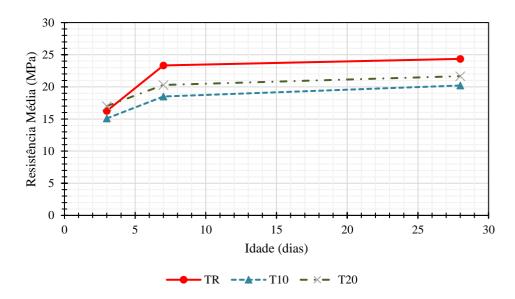


Figura 7 – Gráfico de resistência à compressão.

Os resultados do ensaio de absorção por capilaridade (Figura 8) mostram que para todos os traços a absorção aumentou em função do tempo, onde no período de 72 horas o traço referência teve um aumento na absorção de 0,69% o traço T10 de 0,94% e o traço T20 de 0,63%.

Os resultados de absorção, comparando os traços T10 e T20, concordam com o resultado de resistência e reforçam a hipótese de melhor empacotamento das partículas para o traço T20, pois sugere um menor índice de vazios, diminuindo a absorção por capilaridade e aumentando a resistência.

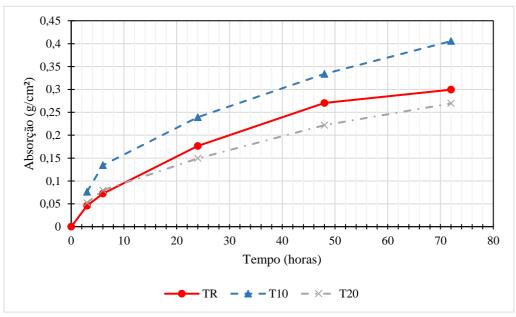


Figura 8 - Gráfico Ensaio de Absorção

7 Conclusão

A pesquisa aplicou o método de empacotamento de partículas do modelo Alfred através do software EMMA, em conjunto com a utilização de aditivo modificador de reologia de alto desempenho a base de policarboxilato e fixando o consumo total de ligantes em torno de 340kg/m³.

Pode-se afirmar que é possível a utilização de RCD na produção de concretos de fluidez controlada, em que o desempenho dos concretos foi analisado por meio de ensaios em seu estado fresco, onde todos os traços apresentaram classe de espalhamento SF1 (entre 550 e 650 mm) no estado endurecido, a resistência à compressão apresentou um decréscimo de 17% no traço T10 e 11% no traço T20, em relação ao traço de referência aos 28 dias, mostrando que a redução no desempenho mecânico se torna um desafio superável mediante à possibilidade de redução do impacto ambiental causado pelo RCD, uma vez que é possível reutilizar o resíduo, minimizando, assim a exploração de jazidas naturais, contudo mais estudos são necessários para melhor analisar a heterogeneidade do material deste material.

8 Referências bibliográficas

ABNT NBR 5739 (- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2018).pdf., [s.d.].

ABNT NBR 9779 (ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2013).pdf. , [s.d.].

ABNT NBR 16972 (ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2021).pdf., [s.d.].

ABNT NBR15823-2 (ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,2017).pdf. , [s.d.].

ÂNGULO ET AL (2002), Â., S. C. Normalização dos agregados graúdos de resíduos de construção e demolição reciclados para concretos e a variabilidade. [s.d.].

BARBOZA, L. DA S.; ALMEIDA FILHO, F. M. DE. Concreto autoadensável com baixo consumo de cimento: impacto da redução do consumo de cimento na resistência à compressão. **Matéria (Rio de Janeiro)**, v. 23, n. 3, 18 out. 2018.

CASTRO, A. L. DE; PANDOLFELLI, V. C. Revisão: conceitos de dispersão e empacotamento de partículas para a produção de concretos especiais aplicados na construção civil. **Cerâmica**, v. 55, n. 333, p. 18–32, mar. 2009.

MEHTA, P. K.; MONTEIRO, P. J. M. Concrete: Microstructure, Properties, and Materials. 3° ed. [s.l.] Ibracon, 2008.

PILEGGI, R. G.; RODRIGUES, J. DE A. Concreto Refratário Auto-Escoante: Metodologia de Formulação e Correlações entre Distribuição Granulométrica e Reologia. **Cerâmica Industrial**, p. 6, 1996.

T. DE GRAZIA, M. et al. Investigation of the use of continuous particle packing models (PPMs) on the fresh and hardened properties of low-cement concrete (LCC) systems. **Construction and Building Materials**, v. 195, p. 524–536, jan. 2019.