Joint Project-Based Learning Experience IMT-POLI-UIUC

INSTITUTO MAUÁ DE TECNOLOGIA

The Glider Challenge

MAY, 2019

SÃO PAULO, BRAZIL

1. Objectives

The main goals of the GLIDER CHALLENGE are to (i) design, (ii) put together and (iii) fly a small balsa-wood model glider, achieving the highest combined score for the three phases of the challenge in the process.

The challenge must be met by teams of 4 students (\pm 1 student), preferably comprising of two UIUC students, one IMT student and one POLI-USP student (task 1: form teams of 4 \pm 1 students).

WARNING: During this challenge the students will be handling sanding, filing, cutting and gluing operations. The use of safety goggles is mandatory at all times and care should be exercised at all time while handling sharp hobby knife and tooling. While sanding balsa wood, it is also recommended the use of a dust mask. The use of portable electrical tools or machine shop tools are not necessary and will only be allowed if justified by the team and authorized by the activity coordinator, who will supervise the whole operation. The use of equipment inside a shop or Fab Lab (Poli's or IMT's) will be subjected to local safety instructions and availability of personal safety equipment as requested (task 2 for all teams: observe safety precautions at all times).

2. Rules and task sequence.

(task 3: read ALL the rules prior to engage any action!).

- 1) A set of pre-cut parts and blanks will be delivered to each team.
- 2) Check the kit received (task 4) in order to make sure it includes:
 - a) One safety goggle for each member of your team.
 - b) Dust masks.
 - c) A blank for cutting the fuselage forward section.
 - d) Two blanks for conforming the wings.
 - e) A long square-section stick to be cut in proper length and used as a tail boom.
 - f) A balsa sheet from which the horizontal and vertical stabilizers will be cut, after proper sizing.
 - g) Some minor weights and towing hook (piano wire sections), for CG adjustment and catapult launch, respectively.
 - h) CA Glue, sandpaper, sand block, ruler, hobby knife.
- 3) Give your project a name (team name, task 5).
- 4) Design your glider (task 6).
- 5) Build your glider (task 7).
- 6) Balance the CG of your glider (task 8).
- 7) Test your glider dynamically in an open-discharge wind tunnel for verifying the longitudinal stability (task 8a optional).
- 8) Prepare a few slides for a PPT presentation based on your team's project and sizing notes (task 9).
- 9) Present your project (task 10).
- 10) Make up to 3 adjusting/rigging launches (preparation) (task 11).
- 11) Participate in the competition (task 12).
- 12) Your design will be evaluated by one of the appointed judges using the following grading criteria:

TEAM NAME: ______ Date: May _____, 2019.

1- Design Competition				
Phase	Requirement	Grading range	Assigned Grade	
Design	Criteria for tail sizing and tail boom	0-3		
	sizing and technical design			
	Criteria for sizing the dihedral angle	0-3		
	Criteria for airfoil choosing and	0-5		
	shaping.			
	CG position estimation	0-3		
	Creativity	0-3		
	Decoration and number markings	0-2		
		Sub-total->		
Construction	Overall appearance and cleanliness	0-3		
	General alignment of angles and	0-3		
	symmetry			
	Lateral balance	0-3		
	Position of CG as per design	0-3		
	(before any testing)			
	Airworthiness condition (will hold	0-3		
	together under a high G catapult			
	launch?) *	Sub-total->		
		3ub-total->		
Flight	Velocity measured at take-off.	See Section 5		
	Straight line distance	See Section 5		
	Lateral Deviation	See Section 5		
	Overall Launch Quality	See Section 5		
	CG position on longer flight x	See Section 5		
	Predicted CG position			
		Sub-total->		
1-Design Competition Team Total →				
2-Fli	2-Flight Competition Team Total (from section 5) →			
	Joint PBL Team Grand Total →			

Table 1 – Grading criteria

(*) Average launch acceleration: 10 N / $0.02 \text{ kg} = 500 \text{ m/s}^2 = 51 \text{ gs} !!!$

3. Designing.

This is part (i) of the competition and comprises:

Step	Description	Task	References
1	Calculate the	Research on how to calculate	Nasa Online Mean
	Mean	the MAC and perform the	Aerodynamic Chord Calculator
	Aerodynamic	calculation. You may use the	(Site 2)
	Chord (MAC) of	graphical approach as well	Airfield Models Site (Site 3)
	your wing	(recommende).	, ,
2	Define the length	Research on "Tail Volume	MIT-OCW — Basic Aircraft
	of the tail boom	and Tail Volume Coefficient"	Design Rules (site 1).
3	Define the area of	for the horizontal and vertical	
	the horizontal	tails and understand its	Nasa Online Mean
	stabilizer	meaning. Research values for	Aerodynamic Chord Calculator
4	Define the arm of	the Horizontal and vertical	(Site 2)
	the horizontal	tail volume coefficient and	
	stabilizer	choose values that you	
5	Define the area of	consider suitable for your	
	the vertical	design.	
6	Define the arm of the vertical		
	stabilizer		
7	Define the	Research on spiral stability.	MIT-OCW — Basic Aircraft
'	dihedral angle of	Research on spiral stability.	
	the wings. Assume		Design Rules (site 1).
	$C_L \approx 0.3$		
8	Choose how you	Research on airfoil camber	Journal of Aircraft Paper:
	would like to	and thickness over chord (t/c)	Basic Understanding of Airfoil
	shape your wing	parameter.	Characteristics at Low
	cross sections	•	Reynolds Numbers, Figures 11
	(airfoil, leading-		and 12, only (site 4)
	edge and trailing-		
	edge) geometry.		
9	Define the position	Research on the meaning of	MIT-OCW – Basic Aircraft
	of the Center of	"Static Margin".	Design Rules (site 1). Use
	Gravity (CG or		Equation 1 and Figure 2 of the
	CoG) of your		paper and assume for this
	glider.		calculation that the $x_{np} =$
			23 mm from the MAC Leading
			Edge. Consider that the
			catapult will launch your
			glider with a slight "pitch-up
10	NA/alaba	NASSAURA SAN SAN SAN SAN SAN SAN SAN SAN SAN SA	nose setup".
10	Weight your	Measure and calculate in	
	balanced model	grams/sqcm.	
	and calculate W/S		
	(weight over wing area), known as		
	area), known as		

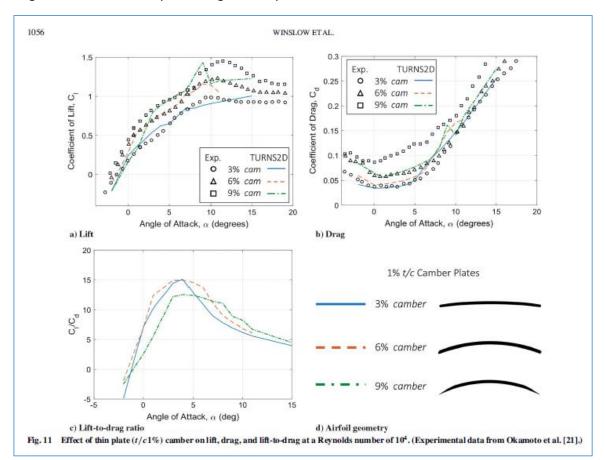
wing loading	
parameter.	

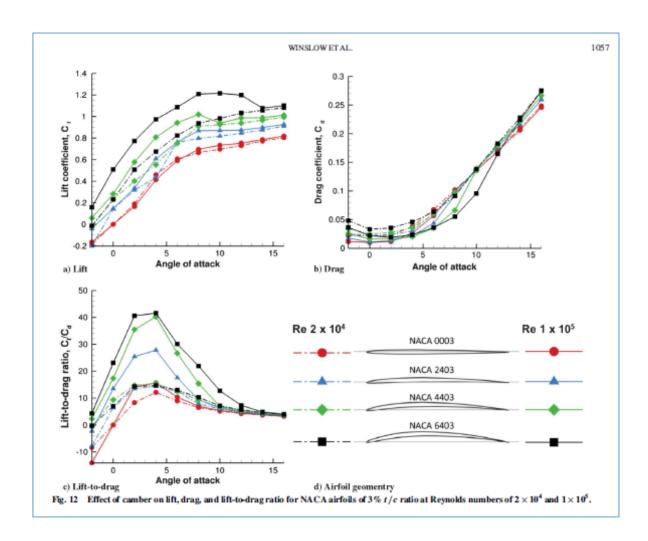
Take note of all your calculations and decisions as you make progress, in order to make a complete report and presentation of your design, later in the challenge.

Step	Description	Results
1	MAC	
2	Define the length	
	of the tail boom.	
3	Define the area of	
	the horizontal	
	stabilizer and	
	declare the	
	Horizontal Volume	
	Coefficient chosen.	
4	Define the arm of	
	the horizontal	
	stabilizer	
5	Define the area of	
	the vertical	
	stabilizer and	
	declare the	
	Vertical Volume	
_	Coefficient chosen.	
6	Define the arm of	
	the vertical	
	stabilizer.	
7	Define the	
	dihedral angle of	
	the wings (Y) and	
	declare the Spiral Parameter B,	
	chosen.	
8		
0	Choose how you would like to sand	
	(shape) the	
	Leading-Edge and	
	the Trailing-Edge	
	of your wing.	
9	Define the position	
	of your CG and	
	declare the Static	
	Margin Chosen.	
10	Weight of the	
	finished model.	
11	Wing loading of	
	the finished	
	model.	

3.1 Suggested Research References for the design competition:

Site 1: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-01-unified-engineering-i-ii-iii-iv-fall-2005-spring-2006/systems-labs-06/spl8.pdf


Site 2: http://www.nasascale.org/p2/wp-content/uploads/mac-calculator.htm


Site 3:

https://www.airfieldmodels.com/information_source/math_and_science_of_model_aircraft/formulas/mean_aerodynamic_chord.htm

Site 4: https://arc.aiaa.org/doi/pdf/10.2514/1.C034415

Figures 11 and 12 are excerpts from the Journal of Aircraft PDF (site 4) and are reproduced below for identification purposes only. For larger resolution and better reading, please open the original PDF document by following the link provided:

Notice: all sources referenced here are documents seemingly at public domain over the Internet.

4. Constructing

Use the space, materials, directions and personal protection material provided for construction. A supervisor will be on-site for construction tips. The supervisor will define the maximum building time available for the activity, based on the daily schedule.

All aircraft will be graded in accordance with design and building criteria before the flight sessions.

5. Flight Competition

- The flight competition is planned to occur at IMT's soccer field.
- 30 minutes will be allocated in the competition morning for all teams to warm up and trim the gliders, with up to 3 catapult launches per team in the period. The launch order will be defined by a line formed behind the launch line. During this time the marking for the competition boundaries will be drawn in the lawn.

- The teams may accomplish as many hand launches as they want during the 30 minutes warm up in order to trim their gliders for attempting the longest and straightest flights possible.
- Three official catapult launches will be made by each glider. The catapult releases every glider at the same angle and with the same launching force.

The judges will provide the following information for each flight:

TEAM NAME:	Date: May	, 2019.

Flight	Velocity at take off (m/s)	Straight Line Distance from launch line to touchdown place (m).	Lateral deviation from the midfield line (m). This grade is attributed only for flights of 10 m or more	Overall Launch quality (based on longitudinal and lateral stability)	CG position on longer flight x Predicted CG position
Grading Criteria	• 0 to 10 m/s: 0 pt • 11 to 15 m/s: 1 pt • 16 to 20 m/s: 2 pt • >21 m/s: 3 pt	• 0 to 5 m: 3 pts • 5.1 to 10 m: 6 p • 10.1 to 15 m: pts • 15.1 to 20 m: 1 pts • >20 m: 25 pts.	• 5.1 to 10 m: 6 pts	Use figures below to judge the flight trajectory quality. For each correct volume coefficient (horizontal and vertical) and (dihedral) angle, add 3 points (máx of 9 points).	 No difference: 9 pts Difference less than 5 mm: 3pts Difference more than 5 mm: 0 pts.
FLT 1					
FLT 2					
FLT 3					
Sub- Totals→					
		2	- Flight Competiti	on Team Total→	

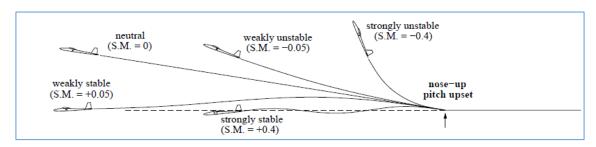


Figure 1 – Figure from MIT-OCW to be used as a benchmark for overall flight quality in longitudinal stability (Horizontal Stabilizer Volume).

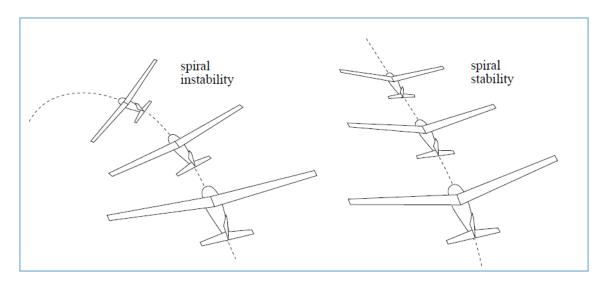


Figure 2 - Figure from MIT-OCW to be used as a benchmark for spiral stability (amount of dihedral angle).

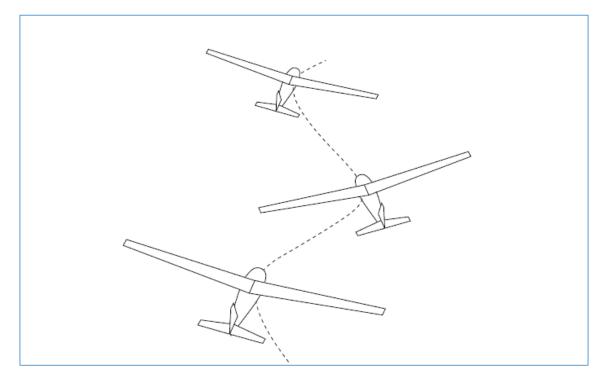


Figure 3 - Figure from MIT-OCW indicating insufficient Vertical Tail volume (dutch-roll oscillation).

Final grade for each team: transport above grades from the flight competition to Table 1 and sum up all grades.

Good challenge!

Joseph Y. Saab Jr - Instituto Mauá de Tecnologia, IMT, Brazil – saab@maua.br
Antonio Luis Campos Mariani – POLI-USP, SP, Brazil - camposmariani@gmail.com
Brian S. Woodard – UIUC, University of Illinois, IL, USA- bswoodrd@illinois.edu

Annex 1 – Basic Glider Reference Diagrams

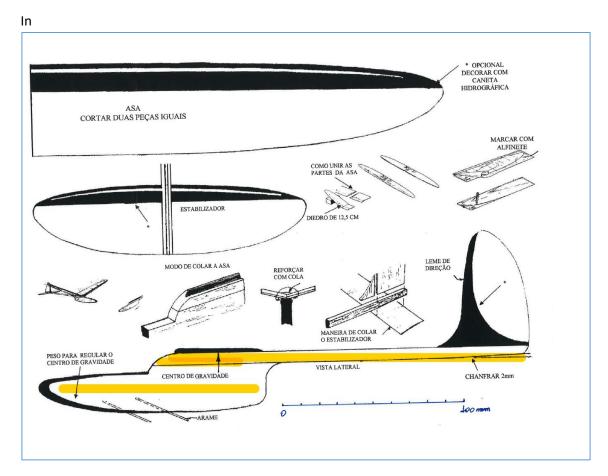


Figure 4 a general glider layout is shown. The wing of your glider will be a simple, tapered trapezoidal wing, not the elliptical one displayed in the figure. Also the horizontal and vertical stabilizers should be shaped in a simple, tapered, trapezoidal or rectangular shape for easy manufacturing.

The fuselage forward section and the tail boom, however, will be as indicated in Fig. 4. Both parts are marked with yellow highlight in the drawing. For a more detailed fuselage profile please refer to

Some suggestions on how to construct the dihedral angle are also shown. Also, notice: (i) the insertion of the skids, made out of piano wire; (ii) the 2 mm chamfer in the lower tailboom, in order to give the horizontal stabilizer some negative incidence. The wire-skids can double as hooks for the catapult-launch, provided they are kept ahead of the Center of Gravity.

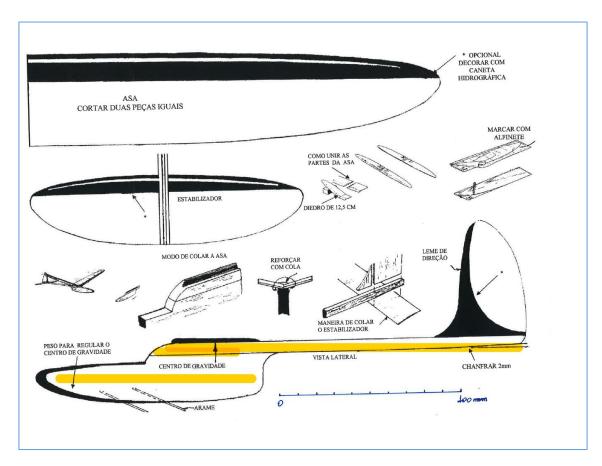


Figure 4 – General glider layout.

A more detailed drawing of the fuselage and of the wood blank, from which the wing will be produced by each team are shown in Figure 5 and Figure 6, respectively.

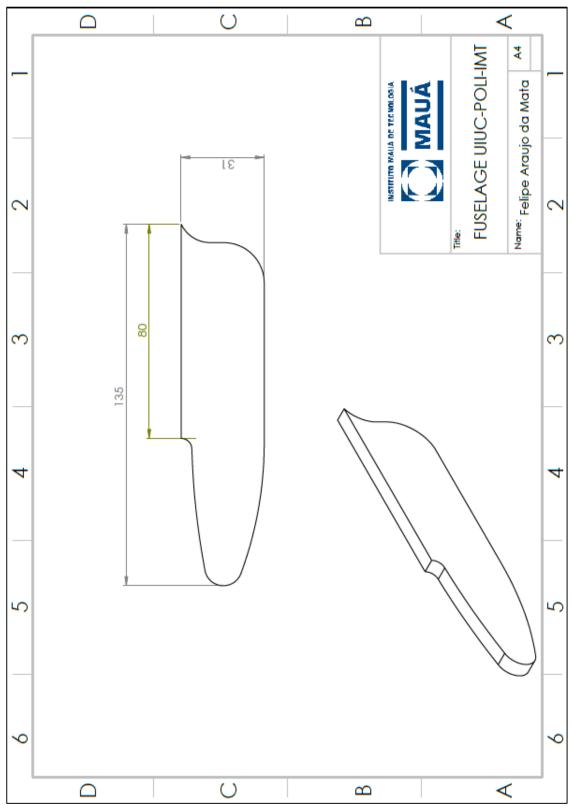


Figure 5 – Fuselage Drawing with dimensions.

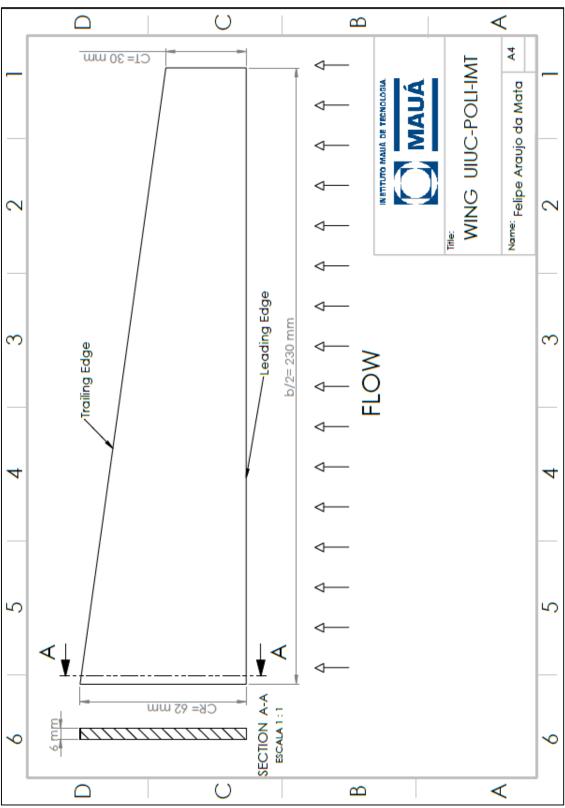


Figure 6 – Semi-wing blank.

Annex 2 – Bill of Material (Parts List)

Item	Description	Quantity	Dimensions	Aplication
		(with spares)		
1	Safety Goggles	32 (max)	One size fits	For all
			most	manufacturing
				operations.
2	Dust masks	10	One size fits	For wood sanding
			most	and gluing.
2	Balsa blank for	10	140 x 33 x 6 mm	Fuselage
	cutting the forward		AAA balsa	construction
	fuselage section			
3	Wing Blanks	20	230 (lenght) x 62	Wing construction
	(trapeizodal)		(root-chord) x 30	
			(tip-chord) x 6	
			(thickness) mm	
	6	10	AAA balsa	T. 11 b
4	Square-section	10	250 x 6 x 6 mm	Tail boom
	stick	10	hard balsa	.
5	Balsa Sheet	10	200 x 100 x 2	For empennage
	T	10	mm	construction
6	Towing hook	10	1/32" piano wire	Catapult launch
7	Wind-Tunnel	5	Thin wire or	Dynamic
	testing attaching		rope.	Longitudinal
	point	40		Stability testing.
8	Hobby Knives	10	C4	Glider Construction
9	Glue	10	CA	For wood, quick
			(cyanoacrylate),	setting.
10	Canadaaaaa	10 : 10	medium viscosity	Fan ainfail abanina
10	Sandpaper	10 + 10	180 grit and 400	For airfoil shaping.
11	Canadolando	10	grit	Fau ainfail ab anina
11	SandBlocks	10	Suitable for the	For airfoil shaping.
12	Donoile	10	sandpaper size	Clidar canaturation
12	Pencils	10	Soft point	Glider construction
13	Rulers	10	mm and inches	Glider construction
14	Notebook	10	Any	For taking notes and and later
1 -	Minorweight	10	As nocessar: : +=	making a report.
15	Minor weight set	10	As necessary to	Balancing the Glider
1.0	Clidar antarrilt	1	balance. Made of PVC	CG.
16	Glider catapult	1		Glider launching.
17	Composition	10	tubing	
17	Competition Manual and Rules	10		
10		10		For protoction
18	Transporting box	10		For protection.
19	Access to the	10		Necessary
	internet			

Notice: gloves will be provided as an optional accessory for the teams.